
Context switching is the fundamental mechanism in operating systems that allows multiple processes to share a

single CPU by alternating between them . It involves storing the current state of a running process so it can be

resumed later, and loading the state of another process to begin or continue its execution.

A process transitions from ready state to running state when it is selected by the CPU scheduler for execution

. This transition occurs when:

Operating Systems Process Management - Unit 4
Assignment

Q.1 Describe what context switching is in process management.

[1] [2]

Key Components of Context Switching:

Process Control Block (PCB): Stores process state information including program counter,

CPU registers, memory allocation, and stack pointer [2]

Context: Comprises process stack, memory address space, virtual memory space, register

values, and stack pointer [2]

Context Switching Steps:

1. Save the current process state to its PCB

2. Update the PCB and move process to appropriate queue (ready, I/O, waiting)

3. Select a new process for execution

4. Update the selected process's PCB to running state

5. Load the new process's context from its PCB

6. Resume execution of the new process [2]

Q.2 What causes a process to transition from the ready state to the running state?

[3]

[4]

Primary Trigger:

CPU becomes available: The operating system scheduler selects a process from the ready

queue based on the scheduling algorithm in use [3]

Selection Criteria:

Scheduling algorithm: Determines which process gets selected (FCFS, SJF, Priority, Round

Robin, etc.) [5]

Process priority: Higher priority processes may be selected first

Arrival time: In FCFS, processes are selected based on arrival order

Burst time: In SJF, shortest processes are selected first



The scheduler ensures optimal CPU utilization by selecting the most appropriate process from the ready queue

according to the system's scheduling policy .

Process scheduling is the method by which the operating system decides which process should be executed by

the CPU at any given time . It manages the allocation of CPU time among multiple competing processes.

1. Resource Optimization

2. System Performance

3. Fairness

4. Multitasking Support

5. Priority Management

The choice of scheduling algorithm depends on the specific system requirements and environment:

Algorithm: First-Come, First-Served (FCFS)

Justification: Simple implementation, suitable for systems with similar execution times and no user interaction

requirements

[6]

Q.3 What is process scheduling and why is it important?

[5] [7]

Why Process Scheduling is Important:

Maximizes CPU utilization and system throughput [5] [8]

Prevents CPU from remaining idle when processes are available

Minimizes waiting time and turnaround time for processes [5]

Improves overall system responsiveness and efficiency

Ensures all processes get fair access to CPU resources [6]

Prevents process starvation where some processes never get executed

Enables multiple processes to run apparently simultaneously [9]

Essential for modern multiprogramming environments

Allows important processes to be executed with higher priority [5]

Supports real-time systems with critical timing requirements

Q.4 Given a scenario, describe which type of scheduling algorithm should be used

and justify your choice.

Batch Processing Systems

[5] [6]



Algorithm: Round Robin (RR)

Justification: Ensures fair CPU time distribution, good response time for interactive applications, prevents

starvation

Algorithm: Priority Scheduling (Preemptive)

Justification: Critical tasks can preempt lower priority ones, meets timing constraints essential for real-time

operations

Algorithm: Multilevel Queue Scheduling

Justification: Different types of processes can use appropriate algorithms, balances efficiency with fairness

Algorithm: Shortest Job First (SJF)

Justification: Minimizes average waiting time, optimal for environments with predictable, short execution times

Multithreading is the ability of an operating system to execute multiple threads of a process concurrently, allowing

different parts of a program to run simultaneously while sharing the same resources .

1. Improved Responsiveness

2. Resource Sharing

3. Economic Benefits

4. Enhanced Performance

Interactive/Time-Sharing Systems

[10] [11]

Real-Time Systems

[5] [12]

Mixed Workload Environments

Short Job Environments

[5]

[6]

Q.5 Explain the concept of multithreading and its advantages.

[13] [14]

Key Concepts:

Thread: Lightweight sub-process or execution path within a program [13]

Concurrency: Multiple threads can execute simultaneously on multi-processor systems [14]

Resource Sharing: Threads within a process share memory, files, and other resources [13]

Advantages of Multithreading:

Applications remain responsive even when one thread is blocked [13] [14]

Users can interact with one part while another part processes data

Threads automatically share memory and resources of their parent process [13]

More efficient than inter-process communication

Creating threads requires less overhead than creating processes [13] [14]

Thread management is more cost-effective than process management



5. Improved Communication

6. Scalability

Aspect Preemptive Scheduling Non-Preemptive Scheduling

Process Control OS can interrupt running processes Process runs until completion or I/O

Resource

Allocation
Resources allocated for limited time

Process holds resources until

termination

Interruption
Processes can be interrupted mid-

execution

No interruption until process

completes

Context Switching
Frequent context switches, higher

overhead

Less frequent switching, lower

overhead

Response Time
Lower response time, better for interactive

systems

Higher response time, suitable for batch

processing

CPU Utilization Higher CPU utilization Lower CPU utilization

Fairness More fair, prevents monopolization
Less fair, long processes can delay

others

Implementation More complex to implement Simpler implementation

Cost Higher cost due to overhead Lower cost, no scheduling overhead

Examples Round Robin, Priority Scheduling, SRTF FCFS, SJF (non-preemptive)

Best For Multitasking, real-time systems Batch processing, simple systems

First Come First Served (FCFS) is the simplest CPU scheduling algorithm that executes processes in the order

they arrive in the ready queue .

Better utilization of multiprocessor architectures [13] [15]

Parallel execution on multiple CPUs increases throughput

Thread synchronization provides better inter-process communication [13] [14]

High-bandwidth, low-latency communication within applications

Applications can scale better with available system resources [14]

Effective utilization of system capabilities

Q.6 Differentiate between preemptive and non-preemptive scheduling.

[16] [17] [16] [18]

[16] [19]
[18] [19]

[16] [16]

[16] [17] [16]

[16] [12] [18]

[18] [17] [18]

[12]
[12]

[17] [12] [17]

[18] [18]

[16]

[12]
[16]

[12] [12]

Q.7 Describe the First Come First Served (FCFS) scheduling algorithm.

[5] [6]



Shortest Job First (SJF) is a scheduling algorithm that selects the process with the shortest burst time (execution

time) for execution next .

Characteristics:

Non-preemptive: Once a process starts execution, it runs to completion [6]

FIFO principle: First process to arrive gets served first [6]

Simple implementation: Easy to understand and implement [5]

How FCFS Works:

1. Processes are queued in order of arrival

2. CPU executes the first process in the queue

3. Process runs until completion or I/O operation

4. Next process in queue gets CPU time

Advantages:

Simplicity: Easy to implement and understand [5] [6]

Fair: Processes are served in arrival order [6]

No starvation: Every process eventually gets executed

Low overhead: Minimal scheduling overhead

Disadvantages:

Convoy effect: Short processes wait for long processes [5] [6]

Poor turnaround time: Average waiting time can be high [5]

Inefficient: Not suitable for interactive systems

No priority consideration: Important processes may wait longer

Best Use Cases:

Batch processing systems with similar execution times [5]

Simple systems where arrival order is the primary concern

Non-interactive environments

Q.8 Explain the Shortest Job First (SJF) scheduling algorithm.

[5] [6]



Round Robin (RR) is a preemptive scheduling algorithm that assigns each process a fixed time slice (quantum)

and cycles through processes in a circular queue .

Types of SJF:

1. Non-preemptive SJF: Process runs to completion once started

2. Preemptive SJF (SRTF): Shortest Remaining Time First - can preempt currently running

process [5]

How SJF Works:

1. Scheduler examines all processes in ready queue

2. Selects process with minimum burst time

3. Executes selected process (completely in non-preemptive, or until shorter job arrives in

preemptive)

4. Repeats selection process

Advantages:

Optimal average waiting time: Minimizes average waiting time for given set of processes [5]

[6]

High throughput: More short processes complete quickly

Efficient resource utilization: Better CPU utilization than FCFS

Disadvantages:

Starvation problem: Long processes may never execute if short processes keep arriving [5]

[6]

Prediction difficulty: Hard to predict actual burst time in practice

Not suitable for interactive systems: May cause poor response time for long processes

Best Use Cases:

Batch processing with known execution times [5]

Environments where burst time can be accurately predicted

Systems prioritizing quick turnaround for short tasks

Q.9 How does the Round Robin (RR) scheduling algorithm work? Give an example.

[10] [11]



Given processes with time quantum = 2 seconds:

Process Burst Time

P1 4

P2 3

P3 5

Execution Timeline:

How Round Robin Works:

1. Each process gets a fixed time quantum (e.g., 2 seconds)

2. Process executes for its time slice

3. If process completes within time slice, it terminates

4. If time expires, process is preempted and moved to end of ready queue

5. Next process in queue gets CPU time

Example:

Time 0-2: P1 executes (remaining: 2), moves to end of queue

Time 2-4: P2 executes (remaining: 1), moves to end of queue

Time 4-6: P3 executes (remaining: 3), moves to end of queue

Time 6-8: P1 executes (remaining: 0), completes

Time 8-9: P2 executes (remaining: 0), completes

Time 9-11: P3 executes (remaining: 1), moves to end

Time 11-12: P3 executes (remaining: 0), completes [10]

Advantages:

Fair allocation: Every process gets equal CPU time [10] [11]

No starvation: All processes eventually execute

Good response time: Suitable for interactive systems [11]

Predictable: Easy to estimate completion times

Disadvantages:

Context switching overhead: Frequent switching reduces efficiency [10] [20]

Performance depends on quantum size: Too small increases overhead, too large

approaches FCFS [20]

Higher waiting time: May have longer average waiting time than SJF [10]



Priority Scheduling assigns priority levels to processes, with higher priority processes executed before lower

priority ones . However, this can lead to starvation.

Starvation occurs when low-priority processes are indefinitely delayed because higher-priority processes

continuously arrive and get executed first . The low-priority process may never get CPU time.

1. Aging Technique

2. Priority Inheritance

3. Multilevel Feedback Queues

4. Time Slicing with Priority

5. Priority Bounds

6. Mixed Scheduling Algorithms

Q.10 Discuss how priority scheduling can cause starvation and how it can be

mitigated.

[5]

What is Starvation?

[5]

How Priority Scheduling Causes Starvation:

1. Continuous arrival of high-priority processes: New high-priority processes keep entering

the system

2. Indefinite postponement: Low-priority processes remain in ready queue indefinitely

3. Resource monopolization: High-priority processes dominate CPU usage

4. System unfairness: Some processes never get chance to execute

Mitigation Techniques:

Gradually increase priority of waiting processes over time [5]

Older processes eventually gain high enough priority to execute

Ensures eventual execution of all processes

Temporarily boost priority of low-priority processes holding resources needed by high-priority

processes

Prevents priority inversion problems

Use multiple priority levels with different scheduling algorithms

Allow processes to move between priority levels based on behavior

Combine priority scheduling with round-robin within same priority level

Ensures processes at same priority get fair CPU time

Set maximum waiting time limits

Automatically boost priority after certain waiting period

Use different algorithms for different priority classes



UNIX operating systems implement sophisticated multilevel feedback queue scheduling with several distinctive

features :

1. Multilevel Priority Queues

2. Dynamic Priority Adjustment

3. Time Slicing

4. Process States

5. Nice Values

6. Real-time Scheduling Classes

7. Load Balancing

Balance priority requirements with fairness considerations

Q.11 Outline the key features of process scheduling in UNIX operating systems.

[21] [22]

Key Features:

Multiple priority levels (typically 0-127 or 0-255)

Higher numbers indicate lower priority

Separate queues for different priority classes

Process priorities change based on behavior and resource usage [22]

CPU-intensive processes get lower priority over time

I/O-bound processes maintain higher priority

Each process gets time quantum based on priority level

Higher priority processes get longer time slices

Preemptive scheduling with time slice expiration

Runnable: Ready to execute, in priority queue

Sleeping: Waiting for event or resource [22]

Zombie: Terminated but not yet cleaned up

Stopped: Suspended by signal

User-controllable priority adjustment mechanism

Range from -20 (highest) to +19 (lowest priority)

Allows users to influence process scheduling

Support for real-time processes with guaranteed response times

FIFO and Round-Robin real-time scheduling policies

Higher priority than normal time-sharing processes

In multiprocessor systems, distribute processes across CPUs

Migration of processes between processors for optimal performance



8. Interactive Process Detection

9. Aging Mechanism

10. Context Switching Optimization

⁂

System identifies interactive processes automatically

Provides better response time for user-interactive applications

Prevents starvation by gradually increasing priority of waiting processes

Ensures long-waiting processes eventually get CPU time

Efficient context switching mechanisms

Minimal overhead during process transitions [21]

[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]

1. https://www.geeksforgeeks.org/operating-systems/states-of-a-process-in-operating-systems/

2. https://byjus.com/gate/process-state-in-operating-system-notes/

3. https://www.alibabacloud.com/tech-news/a/shueduler/gv69skl0pm-the-science-behind-scheduling-algo

rithms

4. https://curatepartners.com/blogs/skills-tools-platforms/understanding-scheduling-algorithms-optimizing-

system-performance-and-efficiency/

5. https://www.geeksforgeeks.org/operating-systems/context-switch-in-operating-system/

6. https://www.techtarget.com/whatis/definition/context-switch

7. https://www.scaler.com/topics/operating-system/context-switching-in-os/

8. https://en.wikipedia.org/wiki/Context_switch

9. https://www.tutorialspoint.com/operating_system/os_context_switching.htm

10. https://www.geeksforgeeks.org/operating-systems/preemptive-and-non-preemptive-scheduling/

11. https://www.geeksforgeeks.org/operating-systems/difference-between-preemptive-and-non-preemptiv

e-cpu-scheduling-algorithms/

12. https://www.multisoftvirtualacademy.com/blog/common-advantages-and-disadvantages-of-multithreadi

ng-in-java

13. https://data-flair.training/blogs/round-robin-scheduling-algorithm/

14. https://www.scaler.com/topics/round-robin-scheduling-in-os/

15. https://www.studytonight.com/operating-system/round-robin-scheduling

16. https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqj/index.html

17. https://www.shiksha.com/online-courses/articles/threads-and-multi-threading-operating-system/

18. https://www.geeksforgeeks.org/operating-systems/benefits-of-multithreading-in-operating-system/

19. https://unstop.com/blog/multithreading-in-os

20. https://byjus.com/gate/difference-between-preemptive-and-non-preemptive-scheduling/

21. https://www.geeksforgeeks.org/operating-systems/process-schedulers-in-operating-system/

22. https://www.geeksforgeeks.org/operating-systems/cpu-scheduling-in-operating-systems/

23. https://byjus.com/gate/context-switching-in-os-notes/

https://www.geeksforgeeks.org/operating-systems/states-of-a-process-in-operating-systems/
https://byjus.com/gate/process-state-in-operating-system-notes/
https://www.alibabacloud.com/tech-news/a/shueduler/gv69skl0pm-the-science-behind-scheduling-algorithms
https://www.alibabacloud.com/tech-news/a/shueduler/gv69skl0pm-the-science-behind-scheduling-algorithms
https://curatepartners.com/blogs/skills-tools-platforms/understanding-scheduling-algorithms-optimizing-system-performance-and-efficiency/
https://curatepartners.com/blogs/skills-tools-platforms/understanding-scheduling-algorithms-optimizing-system-performance-and-efficiency/
https://www.geeksforgeeks.org/operating-systems/context-switch-in-operating-system/
https://www.techtarget.com/whatis/definition/context-switch
https://www.scaler.com/topics/operating-system/context-switching-in-os/
https://en.wikipedia.org/wiki/Context_switch
https://www.tutorialspoint.com/operating_system/os_context_switching.htm
https://www.geeksforgeeks.org/operating-systems/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/operating-systems/difference-between-preemptive-and-non-preemptive-cpu-scheduling-algorithms/
https://www.geeksforgeeks.org/operating-systems/difference-between-preemptive-and-non-preemptive-cpu-scheduling-algorithms/
https://www.multisoftvirtualacademy.com/blog/common-advantages-and-disadvantages-of-multithreading-in-java
https://www.multisoftvirtualacademy.com/blog/common-advantages-and-disadvantages-of-multithreading-in-java
https://data-flair.training/blogs/round-robin-scheduling-algorithm/
https://www.scaler.com/topics/round-robin-scheduling-in-os/
https://www.studytonight.com/operating-system/round-robin-scheduling
https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqj/index.html
https://www.shiksha.com/online-courses/articles/threads-and-multi-threading-operating-system/
https://www.geeksforgeeks.org/operating-systems/benefits-of-multithreading-in-operating-system/
https://unstop.com/blog/multithreading-in-os
https://byjus.com/gate/difference-between-preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/operating-systems/process-schedulers-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/cpu-scheduling-in-operating-systems/
https://byjus.com/gate/context-switching-in-os-notes/


24. https://mohitmishra786.github.io/exploring-os/src/day-02-process-states-and-transitions.html

25. https://docs.oracle.com/cd/E19683-01/806-4125/psched-16/index.html

26. https://testbook.com/question-answer/consider-the-following-statements-about-process-st--5e9d9644f

60d5d2560943713

27. https://unstop.com/blog/scheduling-algorithms-in-operating-system

28. https://www.geeksforgeeks.org/operating-systems/introduction-of-process-management/

29. https://www.youtube.com/watch?v=lD3IIXoNwIo

30. https://www.tutorialspoint.com/benefits-of-multithreading-in-operating-system

31. https://www.b12.io/resource-center/online-scheduling/should-you-use-round-robin-scheduling.html

32. https://testbook.com/key-differences/difference-between-preemptive-and-non-preemptive-scheduling

33. https://www.geeksforgeeks.org/operating-systems/advantages-and-disadvantages-of-various-cpu-sche

duling-algorithms/

34. https://drbtaneja.com/preemptive-vs-non-preemptive-scheduling/

35. https://www.geeksforgeeks.org/operating-systems/round-robin-scheduling-in-operating-system/

36. https://www.tutorialspoint.com/difference-between-preemptive-and-non-preemptive-scheduling-in-os

37. https://www.geeksforgeeks.org/operating-systems/multithreading-in-operating-system/

38. https://www.linkedin.com/advice/0/how-does-round-robin-algorithm-schedule-tasks-irh4c

39. https://www.geeksforgeeks.org/operating-systems/six-state-process-model-in-operating-system/

40. https://www.redwood.com/article/job-scheduling-algorithms/

https://mohitmishra786.github.io/exploring-os/src/day-02-process-states-and-transitions.html
https://docs.oracle.com/cd/E19683-01/806-4125/psched-16/index.html
https://testbook.com/question-answer/consider-the-following-statements-about-process-st--5e9d9644f60d5d2560943713
https://testbook.com/question-answer/consider-the-following-statements-about-process-st--5e9d9644f60d5d2560943713
https://unstop.com/blog/scheduling-algorithms-in-operating-system
https://www.geeksforgeeks.org/operating-systems/introduction-of-process-management/
https://www.youtube.com/watch?v=lD3IIXoNwIo
https://www.tutorialspoint.com/benefits-of-multithreading-in-operating-system
https://www.b12.io/resource-center/online-scheduling/should-you-use-round-robin-scheduling.html
https://testbook.com/key-differences/difference-between-preemptive-and-non-preemptive-scheduling
https://www.geeksforgeeks.org/operating-systems/advantages-and-disadvantages-of-various-cpu-scheduling-algorithms/
https://www.geeksforgeeks.org/operating-systems/advantages-and-disadvantages-of-various-cpu-scheduling-algorithms/
https://drbtaneja.com/preemptive-vs-non-preemptive-scheduling/
https://www.geeksforgeeks.org/operating-systems/round-robin-scheduling-in-operating-system/
https://www.tutorialspoint.com/difference-between-preemptive-and-non-preemptive-scheduling-in-os
https://www.geeksforgeeks.org/operating-systems/multithreading-in-operating-system/
https://www.linkedin.com/advice/0/how-does-round-robin-algorithm-schedule-tasks-irh4c
https://www.geeksforgeeks.org/operating-systems/six-state-process-model-in-operating-system/
https://www.redwood.com/article/job-scheduling-algorithms/

