Experiment No 3
Title:
Real-Time Undo/Redo System Using Stack
0bjective:
To implement a real-time text editor simulation that supports Undo and Redo functionalities using Stack data structure.
Problem Statement
Develop a program that simulates a basic text editing application using two stacks to manage user actions. The application must support:
· Making changes to a document.
· Undoing the most recent change.
· Redoing a previously undone change.
· [bookmark: _GoBack]Displaying the current state of the document.

 Theory
A stack is a linear data structure that follows the LIFO (Last In, First Out) principle. It is ideal for implementing Undo/Redo functionalities:
· When a user makes a change, the previous state is pushed to the Undo Stack.
· When the user performs Undo, the current state is pushed to the Redo Stack, and the previous state is popped from the Undo Stack.
· When the user performs Redo, the last undone state is restored from the Redo Stack and pushed back onto the Undo Stack.
Using two stacks:
· undo_stack: stores document states before each change.
· redo_stack: stores states that were undone and can be redone.

 Algorithm
Initialization:
· undo_stack ← empty
· redo_stack ← empty
· document ← ""
Make a Change (new_text):
1. Push current document to undo_stack
2. Clear redo_stack
3. Set document ← new_text
Undo():
1. If undo_stack is not empty:
· Push current document to redo_stack
· Pop top from undo_stack and assign to document
2. Else: Print "Nothing to undo"
Redo():
1. If redo_stack is not empty:
· Push current document to undo_stack
· Pop top from redo_stack and assign to document
2. Else: Print "Nothing to redo"
Display():
· Print the current value of document

Test Cases
	Operation
	Input Text
	Output / Document State

	Make Change
	"Hello"
	Hello

	Make Change
	"Hello World"
	Hello World

	Undo
	
	Hello

	Redo
	
	Hello World

	Undo
	
	Hello

	Make Change
	"New Text"
	New Text

	Redo
	
	Nothing to redo (Redo stack cleared)

 Conclusion
This experiment successfully demonstrates the use of stack data structures to implement Undo and Redo operations. It simulates how modern text editors allow users to revert and reapply changes. The use of two stacks ensures an efficient and logical approach to managing editing history.

