

Process Management - Exam Notes

1. Definition of Process Management

 Process: A process is a program in execution. It includes the program code, current

activity (program counter), process stack, data section, and other OS resources.

 Process Management: It's the activity of managing the lifecycle of processes,

including their creation, execution, and termination, and ensuring efficient CPU

utilization.

2. Types of Processes

 I/O-bound Process: Spends more time performing I/O operations than computations.

 CPU-bound Process: Spends more time performing computations than I/O.

 Foreground Process: Interacts directly with the user.

 Background Process: Runs without user interaction.

 System Process: Executes OS functions.

3. Process States and Transitions

Process States

 New: Process is being created.

 Ready: Process is loaded into main memory, waiting to be assigned to CPU.

 Running: Process is currently executing on CPU.

 Waiting (Blocked): Process is waiting for some event (e.g., I/O completion).

 Terminated (Exit): Process has finished execution.

State Transition Diagram

 +---------+

 | New |

 +---------+

 |

 v

 +---------+

 | Ready |<-------------------+

 +---------+ |

 | | |

 | v |

 +--------+ |

 | Running|---------------------+

 +--------+ |

 | | | Interrupt or time slice expires

 | v v

 +---------+ +---------+

 | Waiting |<------| Terminated|

 +---------+ +----------+

 | ^

 | |

 +---+

 Event Occurs

 New → Ready: Process creation

 Ready → Running: Scheduler dispatch

 Running → Waiting: Waiting for I/O or event

 Waiting → Ready: Event completed

 Running → Ready: Interrupt or preemption

 Running → Terminated: Process finished or killed

4. Process Control Block (PCB)

 Definition: Data structure used by OS to store all information about a process.

 Contents of PCB:

o Process ID (PID)

o Process State

o Program Counter (PC)

o CPU Registers

o CPU Scheduling Information (priority, pointers)

o Memory Management Info (page tables, base/limit registers)

o Accounting Info (CPU usage, time limits)

o I/O Status (list of open files, devices)

5. Context Switching

 Definition: The process of storing the state of a running process and loading the state

of another process so that the CPU can switch between processes.

 Steps:

o Save the context of the current process into its PCB.

o Load the context of the next scheduled process from its PCB.

 Impact on Performance:

o Context switches are overhead and do not do useful work.

o Frequent context switching reduces CPU efficiency.

o Time taken for context switching depends on hardware and OS.

6. Process Scheduling

 The OS uses a scheduler to select which process runs next.

 Goal: Maximize CPU utilization, throughput, minimize waiting time, response time,

and ensure fairness.

7. Types of Schedulers

 Long-Term Scheduler (Job Scheduler)

o Decides which processes are admitted into the system for processing.

o Controls the degree of multiprogramming.

o Invoked infrequently.

 Short-Term Scheduler (CPU Scheduler)
o Decides which ready process will get the CPU next.

o Invoked very frequently (milliseconds).

o Responsible for context switching.

 Medium-Term Scheduler
o Temporarily removes processes from memory (swapping) to reduce degree of

multiprogramming.

o Balances CPU and memory resources.

8. Threads

 Concept of Thread: A thread is the smallest unit of CPU execution within a process.

 Multithreading: Running multiple threads within a single process to achieve

parallelism and better resource utilization.

 Benefits: Improved responsiveness, resource sharing, and efficient CPU usage.

User-level vs Kernel-level Threads

Feature User-level Threads Kernel-level Threads

Management Managed by user-level thread library Managed by OS kernel

Context Switch Fast, no kernel mode switch Slower, involves kernel mode switch

Scheduling Thread library schedules threads Kernel schedules threads individually

Blocking All threads block if one blocks Only the blocked thread blocks

Portability High (runs on any OS) Dependent on OS

9. Scheduling Algorithms

Preemptive vs Non-preemptive Scheduling

 Preemptive Scheduling: CPU can be taken away from a process before it finishes

(e.g., RR, Priority with preemption).

 Non-preemptive Scheduling: Once CPU is allocated, process runs to completion or

waits for I/O (e.g., FCFS, SJF without preemption).

Common Scheduling Algorithms

Algorithm Type Description Advantages Disadvantages

FCFS (First

Come First

Serve)

Non-

preemptive

Processes are

scheduled in order

of arrival.

Simple, easy to

implement

Long waiting time,

poor for short jobs

SJF (Shortest

Job First)

Non-

preemptive or

Preemptive

(SRTF)

Process with

shortest next CPU

burst runs first.

Optimal average

waiting time

Difficult to predict

burst time, may cause

starvation

Round Robin

(RR)
Preemptive

Each process gets a

fixed time slice

(quantum).

Fair, good for

time-sharing

systems

High context switch

overhead, quantum

choice critical

Priority

Scheduling
Both

Each process

assigned priority;

highest priority

runs first

Can be

preemptive or

non-preemptive

Risk of starvation of

low priority processes

10. Process Scheduling in UNIX and Windows

 UNIX Scheduling
o Uses priority-based preemptive scheduling.

o Priorities can be dynamically adjusted based on process behavior (nice value).

o Mixes time-sharing and batch processes.

 Windows Scheduling
o Uses a multilevel feedback queue.

o Threads have priority levels from 0 to 31.

o Scheduler boosts priorities of threads that are interactive.

o Preemptive with time slices varying based on priority.

Summary

Topic Key Points

Process Program in execution; needs resources

Process States New, Ready, Running, Waiting, Terminated

PCB Stores process info for context switching

Context Switching Saving/restoring state, overhead involved

Scheduling Long-term, medium-term, short-term schedulers

Threads Lightweight processes, user vs kernel managed

Scheduling Algorithms FCFS, SJF, RR, Priority, preemptive/non-preemptive

UNIX & Windows Scheduling Priority-based and multilevel feedback queue respectively

	Process Management - Exam Notes
	1. Definition of Process Management
	2. Types of Processes
	3. Process States and Transitions
	Process States
	State Transition Diagram

	4. Process Control Block (PCB)
	5. Context Switching
	6. Process Scheduling
	7. Types of Schedulers
	8. Threads
	User-level vs Kernel-level Threads

	9. Scheduling Algorithms
	Preemptive vs Non-preemptive Scheduling
	Common Scheduling Algorithms

	10. Process Scheduling in UNIX and Windows

	Summary

