Operating Systems: Detailed Exam Notes

1. Basics of Operating Systems

Objectives of an Operating System (OS)

Resource Management: Manage hardware resources such as CPU, memory, disk
space, 1/0O devices.

User Convenience: Provide an environment for users to execute programs easily.
Efficient Execution: Maximize system efficiency by managing multiple tasks and
users.

Security and Access Control: Protect data and resources from unauthorized access.
Error Detection and Handling: Detect and handle errors in hardware, software, and
USer processes.

File Management: Organize, store, retrieve, and manage data files.
Communication Management: Facilitate communication between processes and
users.

Functions of an Operating System

Process Management: Creation, scheduling, and termination of processes.
Memory Management: Allocation and deallocation of memory spaces as needed.
File System Management: Create, delete, read, write files and directories.

Device Management: Control and manage peripheral devices through drivers.
Security and Protection: User authentication and access control.

User Interface: Provide command-line or graphical interfaces for user interaction.

Absolutely! Here’s a more detailed explanation of the Functions of an Operating System
with examples and elaboration:

Functions of an Operating System
(Detailed)

An Operating System (OS) acts as an intermediary between the user and the computer
hardware. It provides a wide range of functions to ensure efficient and convenient use of the

system.

1. Process Management



e The OS manages the creation, execution, suspension, and termination of processes.

e A process is a program in execution.

o Responsibilities:

Process Scheduling: Decides the order in which processes run on the CPU.
Multitasking: Supports multiple processes running seemingly simultaneously.
Synchronization: Coordinates between processes to avoid conflicts.
Inter-Process Communication (IPC): Allows processes to communicate and
share data.

o Process States: Maintains states such as ready, running, waiting, etc.

O O O O

Example: When you open multiple apps, the OS schedules CPU time for each so they work
smoothly.

2. Memory Management

e Manages the computer’s main memory or RAM.
o Responsibilities:
o Allocates memory space to processes when needed.
o Keeps track of each byte in memory — what is used and free.
o Swaps data between RAM and disk when memory is insufficient
(paging/swapping).
o Ensures that processes do not interfere with each other's memory (memory
protection).
o Provides virtual memory to extend apparent memory size.

Example: When multiple apps are running, OS manages memory so each app gets its space
and does not overwrite others.

3. File System Management

e Organizes and controls data storage.
o Responsibilities:

o Creating, deleting, reading, writing, and updating files.
Maintaining directories/folders for easy data organization.
Managing access permissions and security for files.
Providing a hierarchical file structure.

Managing disk space allocation and free space.

O O O O

Example: When you save a document, the OS determines where it is stored on the disk and
keeps track of its location.

4. Device Management (I/0 Management)

o Controls and manages input/output devices like keyboards, printers, disks.



o Responsibilities:

Device drivers interface hardware devices with the OS.
Allocates devices to processes when requested.

o Handles buffering, caching, and spooling to improve efficiency.
o Manages device communication through interrupts.

o O

Example: When you print a file, the OS sends data to the printer via the appropriate device
driver.

5. Security and Access Control

e Protects system data and resources from unauthorized access or misuse.
o Responsibilities:
o User authentication via passwords, biometrics, etc.
o Access control mechanisms determine which users/processes can access
resources.
Implements encryption and firewall controls.
Protects against malware and unauthorized software.

Example: When you log in to your account, the OS verifies your credentials before granting
access.

6. Error Detection and Handling

o Detects and handles errors to ensure reliable computing.

o Responsibilities:

Monitors hardware and software for errors.

Recovers from errors or terminates processes if needed.
o Provides error messages and logging for diagnostics.

o Ensures system consistency after a crash.

o O

Example: If a disk read error occurs, the OS detects it and attempts to recover or alerts the
user.

7. Resource Allocation

o Distributes system resources (CPU, memory, 1/0O devices) among competing
processes efficiently.

o Responsibilities:

Keeps track of resources and allocates them as requested.

Resolves conflicts when multiple processes request the same resource.

Implements scheduling algorithms to maximize throughput.

Prevents deadlocks where processes wait indefinitely for resources.

O O O O



Example: When multiple apps want to print, OS queues print jobs to avoid conflicts.

8. User Interface

« Provides interfaces through which users interact with the computer.
o Types:
o Command-Line Interface (CLI): Text-based interaction via commands.
o Graphical User Interface (GUI): Visual interface with windows, icons,
menus.
e Translates user commands into actions and displays system status.

Example: Windows OS provides GUI with icons; Linux can provide both CLI (Terminal) and
GUI (GNOME, KDE).

9. Job Scheduling

o Decides the order in which jobs (programs or tasks) run.
e Schedules jobs to optimize system performance.

o Balances load between system components.

e Ensures important tasks get priority (priority scheduling).

Example: In batch processing systems, OS queues and executes jobs one after another
efficiently.

10. Networking

o Enables computers to connect and communicate over a network.
o Responsibilities:
o Manages network connections and data transmission.
o Supports protocols like TCP/IP for internet connectivity.
o Provides network file sharing and printer sharing.

Example: When browsing the web, OS handles sending and receiving data packets over the
internet.

Summary Table of OS Functions

Function Description Example

Create, schedule, and terminate

Process Management
processes

Running multiple apps



Function
Memory Management

File System
Management

Device Management

Security & Access
Control

Error Detection
Resource Allocation

User Interface
Job Scheduling

Networking

Description

Allocate and protect memory

Store and organize files

Control hardware devices

Protect against unauthorized access

Detect and recover from errors
Allocate resources to processes

Interface for user interaction

Schedule execution of jobs

Manage communication over
networks

2. Evolution of Operating Systems

Example
Managing RAM between
apps
Saving and retrieving
documents

Printing a file
User login authentication
Disk read failure alert

CPU time sharing

GUI desktops or CLI
terminals

Batch job execution

Internet browsing

o First Generation (1940-1955): No OS; programs were run directly on hardware
(machine language).
e Second Generation (1955-1965): Batch processing OS introduced for sequential job

execution.

e Third Generation (1965-1980): Multiprogramming and time-sharing systems

introduced.

e Fourth Generation (1980-Present): Personal computing OS, GUIs, networking,

distributed OS.

o Modern OS: Mobile OS, real-time OS, virtualization, cloud OS.

3. Types of Operating Systems

o Batch Operating System: Executes batches of jobs without user interaction.
e Time-Sharing OS: Multiple users share system resources simultaneously.
o Distributed OS: Manages a group of distinct computers and makes them appear as a

single system.

e Network OS: Provides services to computers connected over a network.
o Real-Time OS: Processes data as it comes in, typically used in embedded systems.
e Mobile OS: Designed specifically for smartphones and tablets (e.g., Android, iOS).

4. OS Services



Services provided by an OS to users and applications:

Program Execution: Loading and running applications.

I/0 Operations: Abstract hardware devices for easy use.

File System Manipulation: Creating, deleting, reading, writing files.
Communication: Process communication and synchronization.

Error Detection: Monitoring and recovering from errors.

Resource Allocation: Allocating resources fairly among competing tasks.

5. System Calls

Introduction

System calls provide the interface between a running program and the OS.
They allow user programs to request services from the OS kernel.

Types of System Calls

Process Control: Create, terminate, wait, and execute processes (e.g., fork (),
exit()).

File Management: Open, read, write, close files (e.g., open (), read (), write (),
close ()).

Device Management: Request and release device access (e.9., ioctl ()).
Information Maintenance: Get or set system or process attributes (e.g., getpid ()).
Communication: Create and manage communication channels (e.g., pipe ()).

6. OS Structure

6.1 Layered Approach

OS divided into layers, each built on top of the lower one.

Layers interact only with adjacent layers.

Advantages: Easy debugging, modular design.

Example layers: Hardware — CPU scheduling — Memory management — File
system — User interface.

6.2 Monolithic Operating Systems

All OS components run in kernel mode as a single large process.
Pros: Fast execution, simple design.

Cons: Difficult to maintain, prone to bugs.

Examples: Early UNIX systems.

6.3 Microkernel Operating Systems



Only essential functions run in kernel mode (e.g., communication, basic scheduling).
Other services (file system, device drivers) run in user mode.

Pros: Better modularity, easier to extend and maintain.

Cons: Slight performance overhead.

o Examples: MINIX, QNX.

7. Introduction to Linux OS

Components of Linux System

Kernel: Core of Linux that manages hardware, system resources, and processes.
Shell: Command interpreter that allows users to interact with the kernel.

System Libraries: Provide functions for system calls and basic OS functionalities.
System Utilities: Programs that perform individual, specialized tasks.

User Interface: Can be CLI (Command Line Interface) or GUI (Graphical User
Interface).

Basic Shell Commands

e 1s: List files/directories.

e cd: Change directory.

e pwd: Print working directory.

e mkdir: Create a directory.

e rm: Remove files or directories.

e cp: Copy files/directories.

e mv: Move or rename files/directories.
e cat: Display contents of a file.

e chmod: Change file permissions.

e ps: Display active processes.

e kill: Terminate processes.

e man: Display manual for commands.

Short Answer Q&A

Q1. What is an Operating System?
A: It is system software that manages computer hardware and provides services for computer
programs.

Q2. Name any three objectives of an OS.
A: Resource management, providing user interface, security.

Q3. What is multiprogramming?
A: Running multiple programs in memory simultaneously to maximize CPU utilization.



Q4. What are system calls?
A: Interfaces that allow user programs to request services from the OS kernel.

Q5. List any three types of system calls.
A: Process control, file management, device management.

Q6. What is the difference between Monolithic and Microkernel OS?
A: Monolithic OS has all services in one large kernel; Microkernel OS has a minimal kernel
and runs other services in user space.

Q7. What is a shell in Linux?
A: A command interpreter that takes user commands and passes them to the OS.

Q8. Write any two basic Linux commands and their functions.
A 1s - Lists files; ca - Changes directory.

Q9. What is the purpose of automating user management with shell scripts?
A: To save time, avoid errors, and standardize user and file management tasks.

Q10. Name the three main OS structures.
A: Monolithic, Layered, Microkernel.

Important Definitions

o Operating System: Software that manages hardware and software resources and
provides services to users.

e System Call: A mechanism by which a program requests a service from the operating
system.

e Monolithic Kernel: An OS architecture where all components run in kernel mode in
a single large block of code.

e Microkernel: An OS architecture with minimal kernel functionality; other services
run in user mode.

e Shell: A user interface to access OS services, commonly a command-line interpreter.

« Batch Processing: Execution of jobs in batches without user interaction.

e Time-Sharing OS: OS allowing multiple users to interact with the system
simultaneously by sharing CPU time.

e Process: A program in execution.



	Operating Systems: Detailed Exam Notes
	1. Basics of Operating Systems
	Objectives of an Operating System (OS)
	Functions of an Operating System


	Functions of an Operating System (Detailed)
	1. Process Management
	2. Memory Management
	3. File System Management
	4. Device Management (I/O Management)
	5. Security and Access Control
	6. Error Detection and Handling
	7. Resource Allocation
	8. User Interface
	9. Job Scheduling
	10. Networking
	Summary Table of OS Functions
	2. Evolution of Operating Systems
	3. Types of Operating Systems
	4. OS Services
	5. System Calls
	Introduction
	Types of System Calls

	6. OS Structure
	6.1 Layered Approach
	6.2 Monolithic Operating Systems
	6.3 Microkernel Operating Systems

	7. Introduction to Linux OS
	Components of Linux System
	Basic Shell Commands


	Important Definitions

