
Operating Systems: Detailed Exam Notes 

 

1. Basics of Operating Systems 

Objectives of an Operating System (OS) 

 Resource Management: Manage hardware resources such as CPU, memory, disk 

space, I/O devices. 

 User Convenience: Provide an environment for users to execute programs easily. 

 Efficient Execution: Maximize system efficiency by managing multiple tasks and 

users. 

 Security and Access Control: Protect data and resources from unauthorized access. 

 Error Detection and Handling: Detect and handle errors in hardware, software, and 

user processes. 

 File Management: Organize, store, retrieve, and manage data files. 

 Communication Management: Facilitate communication between processes and 

users. 

Functions of an Operating System 

 Process Management: Creation, scheduling, and termination of processes. 

 Memory Management: Allocation and deallocation of memory spaces as needed. 

 File System Management: Create, delete, read, write files and directories. 

 Device Management: Control and manage peripheral devices through drivers. 

 Security and Protection: User authentication and access control. 

 User Interface: Provide command-line or graphical interfaces for user interaction. 

 

Absolutely! Here’s a more detailed explanation of the Functions of an Operating System 

with examples and elaboration: 

 

Functions of an Operating System 

(Detailed) 

An Operating System (OS) acts as an intermediary between the user and the computer 

hardware. It provides a wide range of functions to ensure efficient and convenient use of the 

system. 

 

1. Process Management 



 The OS manages the creation, execution, suspension, and termination of processes. 

 A process is a program in execution. 

 Responsibilities: 
o Process Scheduling: Decides the order in which processes run on the CPU. 

o Multitasking: Supports multiple processes running seemingly simultaneously. 

o Synchronization: Coordinates between processes to avoid conflicts. 

o Inter-Process Communication (IPC): Allows processes to communicate and 

share data. 

o Process States: Maintains states such as ready, running, waiting, etc. 

Example: When you open multiple apps, the OS schedules CPU time for each so they work 

smoothly. 

 

2. Memory Management 

 Manages the computer’s main memory or RAM. 

 Responsibilities: 

o Allocates memory space to processes when needed. 

o Keeps track of each byte in memory — what is used and free. 

o Swaps data between RAM and disk when memory is insufficient 

(paging/swapping). 

o Ensures that processes do not interfere with each other's memory (memory 

protection). 

o Provides virtual memory to extend apparent memory size. 

Example: When multiple apps are running, OS manages memory so each app gets its space 

and does not overwrite others. 

 

3. File System Management 

 Organizes and controls data storage. 

 Responsibilities: 

o Creating, deleting, reading, writing, and updating files. 

o Maintaining directories/folders for easy data organization. 

o Managing access permissions and security for files. 

o Providing a hierarchical file structure. 

o Managing disk space allocation and free space. 

Example: When you save a document, the OS determines where it is stored on the disk and 

keeps track of its location. 

 

4. Device Management (I/O Management) 

 Controls and manages input/output devices like keyboards, printers, disks. 



 Responsibilities: 
o Device drivers interface hardware devices with the OS. 

o Allocates devices to processes when requested. 

o Handles buffering, caching, and spooling to improve efficiency. 

o Manages device communication through interrupts. 

Example: When you print a file, the OS sends data to the printer via the appropriate device 

driver. 

 

5. Security and Access Control 

 Protects system data and resources from unauthorized access or misuse. 

 Responsibilities: 

o User authentication via passwords, biometrics, etc. 

o Access control mechanisms determine which users/processes can access 

resources. 

o Implements encryption and firewall controls. 

o Protects against malware and unauthorized software. 

Example: When you log in to your account, the OS verifies your credentials before granting 

access. 

 

6. Error Detection and Handling 

 Detects and handles errors to ensure reliable computing. 

 Responsibilities: 

o Monitors hardware and software for errors. 

o Recovers from errors or terminates processes if needed. 

o Provides error messages and logging for diagnostics. 

o Ensures system consistency after a crash. 

Example: If a disk read error occurs, the OS detects it and attempts to recover or alerts the 

user. 

 

7. Resource Allocation 

 Distributes system resources (CPU, memory, I/O devices) among competing 

processes efficiently. 

 Responsibilities: 

o Keeps track of resources and allocates them as requested. 

o Resolves conflicts when multiple processes request the same resource. 

o Implements scheduling algorithms to maximize throughput. 

o Prevents deadlocks where processes wait indefinitely for resources. 



Example: When multiple apps want to print, OS queues print jobs to avoid conflicts. 

 

8. User Interface 

 Provides interfaces through which users interact with the computer. 

 Types: 

o Command-Line Interface (CLI): Text-based interaction via commands. 

o Graphical User Interface (GUI): Visual interface with windows, icons, 

menus. 

 Translates user commands into actions and displays system status. 

Example: Windows OS provides GUI with icons; Linux can provide both CLI (Terminal) and 

GUI (GNOME, KDE). 

 

9. Job Scheduling 

 Decides the order in which jobs (programs or tasks) run. 

 Schedules jobs to optimize system performance. 

 Balances load between system components. 

 Ensures important tasks get priority (priority scheduling). 

Example: In batch processing systems, OS queues and executes jobs one after another 

efficiently. 

 

10. Networking 

 Enables computers to connect and communicate over a network. 

 Responsibilities: 

o Manages network connections and data transmission. 

o Supports protocols like TCP/IP for internet connectivity. 

o Provides network file sharing and printer sharing. 

Example: When browsing the web, OS handles sending and receiving data packets over the 

internet. 

 

Summary Table of OS Functions 

Function Description Example 

Process Management 
Create, schedule, and terminate 

processes 
Running multiple apps 



Function Description Example 

Memory Management Allocate and protect memory 
Managing RAM between 

apps 

File System 

Management 
Store and organize files 

Saving and retrieving 

documents 

Device Management Control hardware devices Printing a file 

Security & Access 

Control 
Protect against unauthorized access User login authentication 

Error Detection Detect and recover from errors Disk read failure alert 

Resource Allocation Allocate resources to processes CPU time sharing 

User Interface Interface for user interaction 
GUI desktops or CLI 

terminals 

Job Scheduling Schedule execution of jobs Batch job execution 

Networking 
Manage communication over 

networks 
Internet browsing 

 

2. Evolution of Operating Systems 

 First Generation (1940-1955): No OS; programs were run directly on hardware 

(machine language). 

 Second Generation (1955-1965): Batch processing OS introduced for sequential job 

execution. 

 Third Generation (1965-1980): Multiprogramming and time-sharing systems 

introduced. 

 Fourth Generation (1980-Present): Personal computing OS, GUIs, networking, 

distributed OS. 

 Modern OS: Mobile OS, real-time OS, virtualization, cloud OS. 

 

 

3. Types of Operating Systems 

 Batch Operating System: Executes batches of jobs without user interaction. 

 Time-Sharing OS: Multiple users share system resources simultaneously. 

 Distributed OS: Manages a group of distinct computers and makes them appear as a 

single system. 

 Network OS: Provides services to computers connected over a network. 

 Real-Time OS: Processes data as it comes in, typically used in embedded systems. 

 Mobile OS: Designed specifically for smartphones and tablets (e.g., Android, iOS). 

 

4. OS Services 



Services provided by an OS to users and applications: 

 Program Execution: Loading and running applications. 

 I/O Operations: Abstract hardware devices for easy use. 

 File System Manipulation: Creating, deleting, reading, writing files. 

 Communication: Process communication and synchronization. 

 Error Detection: Monitoring and recovering from errors. 

 Resource Allocation: Allocating resources fairly among competing tasks. 

 

5. System Calls 

Introduction 

 System calls provide the interface between a running program and the OS. 

 They allow user programs to request services from the OS kernel. 

Types of System Calls 

 Process Control: Create, terminate, wait, and execute processes (e.g., fork(), 

exit()). 

 File Management: Open, read, write, close files (e.g., open(), read(), write(), 

close()). 

 Device Management: Request and release device access (e.g., ioctl()). 

 Information Maintenance: Get or set system or process attributes (e.g., getpid()). 

 Communication: Create and manage communication channels (e.g., pipe()). 

 

6. OS Structure 

6.1 Layered Approach 

 OS divided into layers, each built on top of the lower one. 

 Layers interact only with adjacent layers. 

 Advantages: Easy debugging, modular design. 

 Example layers: Hardware → CPU scheduling → Memory management → File 

system → User interface. 

6.2 Monolithic Operating Systems 

 All OS components run in kernel mode as a single large process. 

 Pros: Fast execution, simple design. 

 Cons: Difficult to maintain, prone to bugs. 

 Examples: Early UNIX systems. 

6.3 Microkernel Operating Systems 



 Only essential functions run in kernel mode (e.g., communication, basic scheduling). 

 Other services (file system, device drivers) run in user mode. 

 Pros: Better modularity, easier to extend and maintain. 

 Cons: Slight performance overhead. 

 Examples: MINIX, QNX. 

 

7. Introduction to Linux OS 

Components of Linux System 

 Kernel: Core of Linux that manages hardware, system resources, and processes. 

 Shell: Command interpreter that allows users to interact with the kernel. 

 System Libraries: Provide functions for system calls and basic OS functionalities. 

 System Utilities: Programs that perform individual, specialized tasks. 

 User Interface: Can be CLI (Command Line Interface) or GUI (Graphical User 

Interface). 

Basic Shell Commands 

 ls: List files/directories. 

 cd: Change directory. 

 pwd: Print working directory. 

 mkdir: Create a directory. 

 rm: Remove files or directories. 

 cp: Copy files/directories. 

 mv: Move or rename files/directories. 

 cat: Display contents of a file. 

 chmod: Change file permissions. 

 ps: Display active processes. 

 kill: Terminate processes. 

 man: Display manual for commands. 

 

 

:Short Answer Q&A 

Q1. What is an Operating System? 
A: It is system software that manages computer hardware and provides services for computer 

programs. 

Q2. Name any three objectives of an OS. 

A: Resource management, providing user interface, security. 

Q3. What is multiprogramming? 

A: Running multiple programs in memory simultaneously to maximize CPU utilization. 



Q4. What are system calls? 

A: Interfaces that allow user programs to request services from the OS kernel. 

Q5. List any three types of system calls. 

A: Process control, file management, device management. 

Q6. What is the difference between Monolithic and Microkernel OS? 
A: Monolithic OS has all services in one large kernel; Microkernel OS has a minimal kernel 

and runs other services in user space. 

Q7. What is a shell in Linux? 

A: A command interpreter that takes user commands and passes them to the OS. 

Q8. Write any two basic Linux commands and their functions. 

A: ls - Lists files; cd - Changes directory. 

Q9. What is the purpose of automating user management with shell scripts? 

A: To save time, avoid errors, and standardize user and file management tasks. 

Q10. Name the three main OS structures. 

A: Monolithic, Layered, Microkernel. 

 

Important Definitions 

 Operating System: Software that manages hardware and software resources and 

provides services to users. 

 System Call: A mechanism by which a program requests a service from the operating 

system. 

 Monolithic Kernel: An OS architecture where all components run in kernel mode in 

a single large block of code. 

 Microkernel: An OS architecture with minimal kernel functionality; other services 

run in user mode. 

 Shell: A user interface to access OS services, commonly a command-line interpreter. 

 Batch Processing: Execution of jobs in batches without user interaction. 

 Time-Sharing OS: OS allowing multiple users to interact with the system 

simultaneously by sharing CPU time. 

 Process: A program in execution. 


	Operating Systems: Detailed Exam Notes
	1. Basics of Operating Systems
	Objectives of an Operating System (OS)
	Functions of an Operating System


	Functions of an Operating System (Detailed)
	1. Process Management
	2. Memory Management
	3. File System Management
	4. Device Management (I/O Management)
	5. Security and Access Control
	6. Error Detection and Handling
	7. Resource Allocation
	8. User Interface
	9. Job Scheduling
	10. Networking
	Summary Table of OS Functions
	2. Evolution of Operating Systems
	3. Types of Operating Systems
	4. OS Services
	5. System Calls
	Introduction
	Types of System Calls

	6. OS Structure
	6.1 Layered Approach
	6.2 Monolithic Operating Systems
	6.3 Microkernel Operating Systems

	7. Introduction to Linux OS
	Components of Linux System
	Basic Shell Commands


	Important Definitions

