

[bookmark: _GoBack]

	Group A-Experiment No: 01

	Title: Java calculator.

	Date of performance:
	Date of Submission:

	Class: SE -B
	Roll No.:

	Signature:

Experiment No. 1
Title:
Implement a robust Java calculator program that captures user input dynamically, processes mathematical operations using conditional logic and looping constructs, and ensures efficient error handling
Objective:
To develop a robust Java program that functions as a calculator by dynamically capturing user input, applying conditional logic and looping constructs to perform various mathematical operations, and managing runtime errors using exception handling.
Theory:
A calculator program in Java is a classic programming exercise that combines fundamental concepts of programming such as input/output handling, control flow, looping constructs, and exception handling. Let’s break it down into core theoretical components:

1. User Input Handling
Java uses the Scanner class from the java.util package to accept input from the user. This allows us to dynamically take numbers and operation choices at runtime. Syntax:
Java

Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
It is essential to validate the inputs to prevent errors like reading a string when a number is expected.
2. Control Structures (Conditional Logic)
Conditional statements allow the program to perform different actions based on different conditions. Commonly used structures:
· if, if-else
· switch statement (especially useful for calculator menu options)
· Example:
java

switch(operator) {
 case '+': result = a + b; break;
 case '-': result = a - b; break;
 ...
}

3. Looping Constructs
Loops help the calculator repeat operations until the user decides to exit. Java provides:
· while
· do-while
· for loops
For example:
java

do {
 // perform calculation
} while (userWantsToContinue);
This loop continues to prompt the user for new calculations unless they explicitly exit.

4. Functions/Methods for Modularity
Using methods makes the code modular and reusable. Each operation like addition, subtraction, multiplication, division can be written in separate methods.
Example:
java
CopyEdit
public static int add(int a, int b) {
 return a + b;
}
This improves code readability and maintenance.

5. Exception Handling
Robust calculators must handle errors gracefully. Java provides a powerful exception handling mechanism using:
· try
· catch
· finally
· throw
Examples of exceptions:
· ArithmeticException (e.g., divide by zero)
· InputMismatchException (non-numeric input)
· IllegalArgumentException (invalid operation)
Example:
java
 try {
 int result = a / b;
} catch (ArithmeticException e) {
 System.out.println("Cannot divide by zero!");
}

6. Program Termination and Exit Conditions
The calculator should include an exit option, like "Press 0 to exit," to terminate the loop. This is important in interactive console-based programs.

7. Real-World Application and Importance
Such a calculator simulates basic functionality seen in:
· Mobile calculator apps
· POS (Point of Sale) systems
· Billing systems
· Any mathematical tool interface requiring user interaction
It provides foundational learning for software engineering concepts such as:
· User input validation
· Error-proof coding
· Efficient code structure
Algorithm:-
Step 1: Start the Program
· Begin the execution of the program.
Step 2: Initialize Required Variables
· Declare and initialize variables to store:
· Two operands (e.g., num1, num2)
· Operation choice (e.g., operator)
· Result of the operation (e.g., result)

Java syntax
double num1, num2, result;
char operator;
Step 3: Create a Scanner Object for Input
· Use Scanner class to accept user input from the console.
Java :- Scanner sc = new Scanner(System.in);
Step 4: Display Menu to the User
· Show a menu listing all possible operations:
1. Addition (+)
2. Subtraction (-)
3. Multiplication (*)
4. Division (/)
5. Modulus (%)
6. Exit

Step 5: Use Loop for Continuous Operations
Use a do-while or while loop so the user can continue using the calculator until they choose to exit.
Java code:-
do {
 // calculator logic
} while(userWantsToContinue);

Step 6: Take Input for Numbers and Operator
· Ask the user to:
· Enter first number (num1)
· Choose operator (+, -, *, /, %)
· Enter second number (num2)

Step 7: Use switch-case to Perform Operation
Depending on the operator, use switch-case to:
Add: result = num1 + num2
Subtract: result = num1 - num2
Multiply: result = num1 * num2
Divide: result = num1 / num2
Modulus: result = num1 % num2

Step 8: Implement Exception Handling
· Use try-catch blocks to manage:
· Division by zero (ArithmeticException)
· Wrong data types (InputMismatchException)
· Invalid operations
try {
 // risky operation
} catch (Exception e) {
 // handle the error gracefully
}

Step 9: Display the Result
· Show the output/result of the operation using System.out.println().

Step 10: Ask User to Continue or Exit
· Ask: “Do you want to perform another operation? (Y/N)”
· If Yes → Loop continues
· If No → Exit the loop

Step 11: Close Scanner and End Program
· Close the Scanner object (sc.close();) to free up resources.
· End the program using System.exit(0) or just allow the program to terminate naturally.

Conclusion:
The Java calculator program allows users to perform various mathematical operations interactively and repeatedly. It reinforces the application of OOP principles, control structures, user input handling, and robust exception management. The program also demonstrates how Java can be used to create interactive and user-friendly console applications.
 Questions:
1. What are the different exceptions that can occur in a calculator program?
2. How can modularity be achieved in a Java application?
3. Explain the difference between if-else and switch statements in Java.
4. How does exception handling improve program reliability?
5. Can loops be nested within switch cases in Java? Justify your answer with an example.

